

Importance of Schedule

"We need to maintain our attention on schedule delivery. Data tells us that since July 2003, real cost increase in projects accounted for less than 3 percent of the total cost growth. ... <u>Therefore</u>, our problem is not cost, it is SCHEDULE."

- Dr. Steve Gumley, CEO Defence Materiel Organization (Australia) Quote taken from DMO Bulletin, July 2006, Issue 61, page 3

Copyright © 2007 Lipke

2nd KPM Conf – Tulsa, Ol 3-4 October 2007

Overview

- Introduce the Earned Schedule Concept
- Develop the Schedule Indicators
- Apply to Project Duration Prediction
- Apply to Schedule Analysis

Copyright © 2007 Lipke

nd KPM Conf – Tulsa, Oh 3-4 October 2007

EVM Schedule Indicators • SV & SPI behave erratically for projects behind schedule - SPI improves and equals 1.00 at end of project - SV improves and concludes at \$0 variance • Schedule indicators lose predictive ability over the last third of the project • Why does this happen? - SV = EV − PV - SPI = EV / PV At planned completion PV = BAC At actual completion EV = BAC

Earned Schedule Metric

- Required measures
 - Performance Measurement Baseline (PMB) the time phased planned values (PV) from project start to completion
 - Earned Value (EV) the planned value which has been "earned"
 - Actual Time (AT) the actual time duration from the project beginning to the time at which project status is
- All measures available from EVM

Copyright © 2007 Lipke

• ES (cumulative) is the:

Number of complete PV time increments EV equals or exceeds + the fraction of the incomplete PV increment

• ES = C + I where:

C = number of time increments for $EV \ge PV$ $I = (EV - PV_C) / (PV_{C+1} - PV_C)$

Copyright © 2007 Lipke

Earned Schedule Indicators

• Schedule Variance:

$$SV(t) = ES - AT$$

• Schedule Performance Index:

$$SPI(t) = ES / AT$$

where AT is "Actual Time" - the duration from start to time now

• SV(t) and SPI(t) are time-based (months, weeks ...)

Copyright © 2007 Lipke

Earned Schedule Indicators

 What happens to the ES indicators, SV(t) & SPI(t), when the planned project duration (PD) is exceeded (PV = BAC)?

They Still Work ... Correctly!!

- ES will be \leq PD, while AT > PD
 - SV(t) will be negative (time behind schedule)
 - SPI(t) will be < 1.00

Reliable Values from Start to Finish!!

Copyright © 2007 Lipke

d KPM Conf – Tulsa, O

10

Schedule Forecasting

- Long time goal of EVM ... Prediction of total project duration from present schedule status
- Independent Estimate at Completion (time)
 - IEAC(t) = PD / SPI(t)
 - IEAC(t) = AT + (PD ES) / PF(t)where PF(t) is the Performance Factor (time)
 - Analogous to IEAC used to forecast final cost
- Independent Estimated Completion Date (IECD)
 - IECD = Start Date + IEAC(t)

Copyright © 2007 Lipke

Schedule Analysis with EVM?

- Most practitioners analyze schedule from the bottom up using the network schedule, independent from EVM
 -"It is the only way possible."
 - Analysis of the Schedule is overwhelming
 - Critical Path is used to shorten analysis (CP is longest path of the schedule)
- Duration forecasting using Earned Schedule provides a macro-method similar to the method for estimating Cost
 - A significant advance in practice
- But, there's more that ES facilitates

Copyright © 2007 Lipke

Facilitates Drill-Down Analysis

- ES can be applied to any level of the WBS, to include task groupings such as the Critical Path
 - Requires creating PMB for the area of interest
 - EV for the area of interest is used to determine its ES
- Enables comparison of forecasts, total project (TP) to Critical Path (CP)
 - Desired result: forecasts are equal
 - When TP forecast > CP forecast, CP has changed
 - When CP > TP, possibility of future problems

Copyright © 2007 Lipke

How Can This Be Used?

- <u>Tasks behind</u> possibility of impediments or constraints can be identified
- Tasks ahead a likelihood of future rework can be identified
- The identification is independent from schedule efficiency
- The identification can be automated

PMs can now have a schedule analysis tool connected to the EVM Data!!

Copyright © 2007 Lipke

2nd KPM Conf – Tulsa, OK 3-4 October 2007

17

Leads to ...

- Concept of Schedule Adherence
- Most efficient project execution follows the plan
 - ES provides a way to measure how closely execution is to the plan
- <u>Schedule Adherence</u> provides a means to refine predictions and forecasts
 - Research underway
 - Application has begun

Copyright © 2007 Lipke

2nd KPM Conf – Tulsa, OH

18

Summary

- Derived from EVM data ... only
- Provides time-based schedule indicators
- Indicators do not fail for late finish projects
- Application is scalable up/down, just as is EVM
- Schedule prediction is better than any other EVM method presently used
- Facilitates bridging EVM analysis to include the Schedule
- Provides capability to understand source of rework and refine forecasts & predictions

Copyright © 2007 Lipke

2nd KPM Conf – Tulsa, OK

19

Available Resources

- PMI-Sydney http://sydney.pmichapters-australia.org.au/
- Repository for ES Papers and Presentations
- Earned Schedule Website

http://www.earnedschedule.com/

- Established February 2006
- Contains News, Papers, Presentations, ES Terminology, ES Calculators
- Identifies Contacts to assist with application
- Wikipedia references Earned Schedule

http://en.wikipedia.org/wiki/Earned_Schedule

Copyright © 2007 Lipke

2nd KPM Conf – Tulsa, Ok 3-4 October 2007

Contact Information

Walt Lipke		Kym Henderson
waltlipke@cox.net	Email	kym.henderson@froggy.com.au
+1 405 364 1594	Phone	+61 414 428 537

Copyright © 2007 Lipke

2nd KPM Conf – Tulsa, Oh 3-4 October 2007 21